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The Estimation in P1 of Two-Phase and Three-Phase Structure Seminvariants
via their First Representations
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A probat;ilistic theory is described which is able to estimate in P1 the values of two and three-phase
structure seminvariants. In particular, up to six and seventeen moduli may be exploited in order to

estimate two and three-phase seminvariants respectively.

1. Introduction

Probabilistic theories of the two-phase seminvariants in
P1 have been described by Giacovazzo (1974) and
by Green & Hauptman (1976). Both theories are able
to estimate the value of S(h, + h,)S(h, — h,) by the
joint probability distribution

P(Ehy,, En,, Ep,+h,> En,—1,)- 1)
A common result is that relations of the type
S(h, + h,))S(h; —h) =—1

arise when the |EI’s involved in (1) have suitable
values. (1) involves the same structure factors which
appear in the system

S(h,)S(h,) ~ S(h, + hy),
S(h,)S(h,) ~ S(h, — h,).

When all the |E1’s are large the system gives S(h, + h,)
~ S(h; — h,). Therefore we say that the study of (1)
leads in P1 to the probabilistic theories of the co-
incidence method (Grant, Howells & Rogers, 1957).
A probabilistic theory of the coincidence method valid
in all the space groups has recently been described by
Giacovazzo (1977a,b).

The theory of representations (Giacovazzo, 1977¢)
has given the author new insights into probabilistic
methods of obtaining accurate estimates of the phase
invariants and seminvariants. This theory is able, for
any universal structure invariant or structure semin-
variant @, to arrange in a general way the set of
reflexions in a sequence of subsets, each contained in
the succeeding one, whose order is that of the expected
effectiveness (in the statistical sense) for the estimation
of @. From each subset {B},, which was called the
phasing shell of nth order for @, one is able to estimate
a collection of structure invariants (denoted in the
quoted paper as {¥},) whose values may differ from
@ by constants which arise because of translational
symmetry. In Pl the first representation of the two-

phase seminvariants @ = @y, ,, + @y _4, is shown to be
the collection of the two quartet invariants

Y= Pu+n,t Pb—n,— On,— Pnp
V! = @nin,— Pb—b,— On, — Pn;

The first phasing shell of @ (i.e. the collection of the
basis and of the cross-magnitudes of the quartet
invariants) is then

{B}, = {IEn,|, |En,), |En,+n,l, 1En,—n,!, |Eon,1, |Eonl }.

In conclusion, the theory of representations lets us
know that @ depends in the first instance on six
magnitudes, two of which (i.e. |Eyn | and 1Epy 1) were
not considered in the coincidence method. )
The first aim of this paper is to estimate in P1 the
two-phase seminvariants by means of their first
representation. Thus in § 2 the joint distribution

P(Ey,, En,, En, +hp En,—n,» E2n,, Ean,) (2)

will be studied. The second aim of this paper is to
estimate in P1 the three-phase structure seminvariants
lie. @ = ¢y, + @y + @y where h + k + 1= 0 mod(222)]
by means of their first representation. In accordance
with Giacovazzo (1977c) the first representation of
D = ¢y + Pk + Pn,k,q is the collection of the quintet
invariants:

VYi=0n+ 0+ 20— Ohekeons
YV =—0n+ 0x=20n.1— Phak+20s
YV = 0n— Ok + 20k — Pnikso

W’l", = @Qh— P+ z(ph+k+l — @h+k+21-

The first phasing shell of @ (i.e. the collection of the
basis and of the cross-magnitudes of the quintet
invariants) is then

{B}, = {I|Enl, | Exl, \Epsisat, | Eil, | Enit!, 1Exinl,
[Eh+k+1ls |Enskls |En—xh Ensal, VEksal,
|Esoks2ls |E2nsksally, 1E2l, [Eonsal,
|Easals | Eaps2ks 21l b
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The joint probability distribution of the above 17
structure factors will be studied in § 3.

In our probabilistic approach we will assume the
reciprocal vectors are fixed and the atomic coordinates
are the primitive random variables. Two different
mathematical methods will be used. The first involves
a Gram—Charlier expansion of the characteristic
function; the second directly uses the exponential form
of the characteristic function. Only conclusive formulae
will be given here. The reader will find a general
account of the methods in Giacovazzo (1976) for the
estimation of the quartet invariants which are elements
of the first representation of the two-phase semin-
variants, in Giacovazzo (1977d) for the estimation of
the quintets which are elements of the first represen-
tation of the three-phase structure seminvariants.

2. The estimation of ¢y, ,n + @n_n, in P1 via its
first representatlon

In accordance with § 1 we have studied the joint
probability distribution function (2). We denote by
EE,,... ,E, the normalized structure factors Ey ,Ep,
, |E,, | respectively, by R;, i = 1, ...,6 their moduli,
and by i’ the probability that E, E is posmve Using
the Gram—Charher expansion of the characteristic
function we obtain
3R, A4 )
2N B I

A=1¢€ + €&+ €8 + 26,6 + €&,

P —05+05tanh( 3)

where

6
B=1— S H/(E)8N + (¢,6,& + €,&,8
i=1
+ 66,65+ €,6,8)/2N,
g,=(E}—-1).

H (x) is the Hermite polynomial of order four defined
by

H,(x)=x*—6x?+3.

The number of two-phase seminvariants for which all
the six reflexions in (2) are in the set of measured
reflexions may be a small percentage of the observable
two-phase seminvariants. Thus it might be useful to use
marginal probability densities of (2). In these cases
the probability values can be easily derived from (3)
by making equal to zero the terms ¢; corresponding
to the magnitudes R; which are not in the measure-
ments. In particular, if both R; and R are not in the
measurements, (3) reduces to

R,R, A")
2N B' I’

P, ~05+05tanh( (4)

where

A =¢ + &+ 2¢,

4
B'=1— > H(E)8N +l¢ &8, + € 6¢€l/2N,

i=1
(4) practically coincides with (I1) in Giacovazzo’s
(1974) paper.

If the Fourier transform of the exponential form of

the characteristic function is directly used, the proba-
bility that E,E, is positive is given by

P, = P (5)
fopo oy pY
where
P} =exp(¥B)
x [exp(+ A + AF, T A}, ¢) cosh(dF — A, (T AT,
+exp(—Af + Af, + AT, cosh(ds + A5 F A,
+exp(+Af F A}, + AT, ) cosh(ds — A+ A7, )
+exp(—AE F AL, ¥ A}, ) cosh(df + A5 o + AT, )],
(6)
where

)R J/\/N,
RV,

At,= R R Ry + RY/\/N,
A= RR(R + RD/2N,
A,+2 s= R\R,Ry(R; £ RY/N,
A%, o= RRR(Ry £ RY/N.

The sign probabilities from marginal distributions
may be easily derived from (5) by making equal to zero
in (6) the R’s corresponding to the non-observed
reflexions and by replacing B by the following ex-
pression:

R2R.R R2R,R
B:INDl(;ﬂ) + moz(—2—~“‘),
N N

where: IND1 = 1; 0-5 according to whether R; is in
the measurements or not; IND2 = 1; 0-5 according
to whether R is in the measurements or not.

In (6) the terms Ay Ase Ay are of order 1/N.
If they are neglected in comparison with 4, + 4,,
and with 4 ,, (6) reduces to

P? = exp(FB) cosh A% cosh 4§ cosh A7,

N

®)

Of course, if R, or R are not in the measurements,
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B varies according to (7). In particular if R, and R,
are unknown, (7) and (8) reduce to

P = exp(¥B) cosh 41, )

which coincides with (4.10) of Green & Hauptman
(1976) or with (20) of Giacovazzo (1977a) when (20)
is calculated in P1.

3. Calculations

A model structure in P1 consisting of N = 40 identical
atoms in the unit cell was constructed. With the 118
|El’s greater than 1.6 (i.e. IE,H,,I > 1-6, |Ey hl >
1.6), 167 two-phase seminvariants were calculdted
according to (3), (4), (6). (8), (9) and the first 30 of
these arranged in descending order of the expected
accuracy provided by (3) (Table 1). The contribution
of the Hermite polynomials of order four in (3) and (4)
proved negligible. In order to save computing time
we have excluded them from our calculations. The
column headed cos(T) in Table 1 lists the true values
of cos((o,, +h, T Pn l,) Inspection of Table 1 shows:
(a) all the seminvariants are correctly estimated by

Table 1.

(3); (b)) (4) and (9) seem to be equivalent in many
cases; (c¢) (4) and (9) wrongly estimate seminvariants
No. 17 and 30, on the other hand (3), (6) and (8)
provide their correct signs; (d) (6) wrongly estimates
seminvariants No. 12, 18, 21 which are well estimated
by (3). Furthermore (8) correctly estimates 12 and 21.

These considerations lead to the use of (3) and (8)
in the direct procedures for phase solution.

4. The estimation of the three-phase seminvariants in
P1 via its first representation

Let @ = ¢, + @ + @p+k+2 be our seminvariant. In
accordance with § 1 we have studied the joint proba-
bility distribution function

P(Ew, Ex, Ensx+21, Ety Ensts Ey, p Envksts Envx En—ko

Enion Exiot, Ens ks 21, Ednsks 2t B2ty E2ns 215 E2ks 21,

Eons k420

We denote by E,E,,...,E,, the normalized structure
factors Ey, Ey,....E n, k401 tespectively, by R, i = 1,
.,17 their moduli and by P, the probability that

30 values of sign probabilities for two-phase seminvariants as given by (3), (6), (8), (4), (9) for a

model structure in P1 with N = 40 atoms in the unit cell

The asterisk denotes the magnitudes which are not in the measurements.

No. Ey, Ewv,  Ensn, En—n, Eo, Epm, cos(D () (6) ®) 4) )
1 1.05 3.45 2-10 2.22 0-37 1-80 1-0 0-96 0-58 0-74 0-80 0-57
2 2-76 2-48 1-61 1-98 2-24 1-0 0-94 0-87 0-96 0-90 0-88
3 3.45 2-13 2.24 2-48 1-80 1-33 1-0 0-93 0-72 0-97 0.91 0-92
4 2-76 1-91 1-77 1-77 2.24 1-0 0-93 0-82 0-93 0-86 0-80
5 2-76 1-80 1-92 1-99 2-24 0-16 1-0 0-93 0-78 0-91 0-86 0-79
6 3-45 2-08 1-65 2-64 1-80 * 1-0 0-93 0-81 0-94 0-89 0-87
7 2-76 1-82 1-87 2.28 2.24 * 1-0 0-93 0-83 0-94 0-86 0-80
8 2-76 2.28 1-82 2-52 2.24 * 1-0 0-92 0-85 0-96 0-89 0-87
9 2.76 2.28 1-81 2.52 2.24 * 1-0 0-92 0-85 0-96 0-88 0-87
10 1-98 2-76 1-80 2-48 * 2-24 1-0 0-92 0-83 0-95 0-87 0-83
11 1-56 2-76 2.24 2-30 * 2-24 1-0 0-92 0-81 0-92 0-85 0-75
12 3-45 1-76 1-98 2-76 1-80 2-48 1-0 0-91 0-41 0-96 0-90 0-82
13 2-76 1-77 1-91 3-03 2:24 * 1-0 0-91 0-75 0-93 0-86 0-77
14 3.03 3.45 2-05 3.32 * 1-80 1-0 0-91 0-79 0-98 0-89 0-96
15 1-10 2.76 1-62 2-13 * 2.24 1-0 0-91 0-73 0-83 0-68 0-59
16 1-34 2-76 1-89 3.32 * 2-24 1-0 0-90 0-66 0.87 0-82 0-64
17 2-76 0-01 2.08 2.29 2-24 * 1-0 0-89 0-62 0-62 0-29 0-29
18 1-99 1.51 2-76 3-11 0-56 0-81 1-0 0-88 0-36 0-47 0-81 0-68
19 1.41 2-76 2-52 3.02 1-29 2-24 1-0 0-88 0-54 0-88 0-87 0-70

20 1-02 2-76 2-10 2-12 1-77 2.24 1-0 0-88 0-63 0-85 0-69 0-56

21 2-76 1-76 2-13 345 2.24 2.48 1-0 0-85 0-32 0-95 0-87 0-76

22 2-13 1.76 1-61 2.76 1.33 2.48 1-0 0-81 0-54 0-86 0-78 0-70

23 2-13 1-58 1-82 2-50 1-33 1-59 1.0 0-78 0-55 0-76 0-76 0-68

24 1-47 1-76 1-89 2.05 * 2-48 1-0 0-74 0-67 0-77 0-66 0-61

25 1-90 0-01 1-77 2-60 0.22 2.52 -1.0 0-28 0-31 0-31 0-40 0-40

26 1-41 1-76 1-92 3.10 1-29 2-48 1-0 0-72 0-52 0-77 0-69 0-61

27 1-18 1-76 1-80 1-84 1-09 2.48 1-0 0-71 0-63 0-73 0-58 0-55

28 1-16 1-76 1-80 1-87 0-99 2-48 1-0 0-71 0-63 0-72 0-58 0-55

29 1-00 1-76 1-80 2.24 * 2-48 1-0 0-70 0-64 0-71 0-55 0-53

30 0-56 1.76 1-68 3.02 * 2-48 1-0 0-66 0-60 0-64 0-45 0-45
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EnwExEn+k+21 is positive. Using the Gram—Charlier
expansion of the characteristic function we obtain

R, R,R;A, +4, +4,
Ny/N 1+B, +B,

P+z0-5+0-5tanh( ) (10)

where
A, = 6,6,65 + €565y + E5E1E1y + €46 + E4E5E g
+ 6,8y + E485E¢ + E4E5Ey + E484E; + E5EE,
+ 4le,614(85 + €1 + €1) + E5€,5(Eg + €49 + €13)
+ 85€,6(Eg + &)y F E1) + 6, 615(E5 + &5 + €3],
A, =6,65+ g7+ €,65 + E5E; + €487 + E5&
+ 3le (g + 610 + &1y + €19) + E(&g + £ + €43
+ &)+ 84(& + &1y + €13 + E16)
+ &,(65 + €, + €15 + €9,
A;=1(g, + &5 + & + &),
B, =1(8,6,85 + €,6,6¢ + €683 + € 63€); + § E4E;
+ £ 88+ 8188 s+ E€ 810t €628
+ €,61,616 + €2€3810 + E265 85 + €,€,&
+ 62858 + 6,886 + &8, E14 t €2€3817));
+ 6613815 + E3646 + €365 6 + €648y
+ €384817 + E369E s + E;60€6 + £4€5E)p
T 84868 T 648783 T E585E + 65618y,
T EgE1Ep T Eg€19813 T E3 €11 Ep Tt E9€p €y
+ & €,,€,3)/2N,
17

B,={— Y H(R) + H(R)e,, + H,(R)¢,;

i=1
+ H,(Rye,s + H,(R,)¢,,}/8N,
g=(E}—1).

The number of the three-phase seminvariants for
which all the seventeen reflexions are in the measure-

ments may be a small percentage of the observable
three-phase seminvariants. In these cases the proba-
bility values can be easily derived from (3) by making
equal to unity the terms ¢ corresponding to the
magnitudes R; which are not in the measurements
and by making equal to zero the respective H,(R))’s.
The practical applications of (10) are satisfactory and
are described by Burla, Polidori, Nunzi & Giacovazzo
(1977).

5. Conclusions

The conditional joint probability distributions of the
two and three-phases structure seminvariants in Pl,
given the magnitudes belonging to their first phasing
shells, have been found. As anticipated in the earlier
work, the concept of representation of a structure
seminvariant plays an essential role. We have shown
here that the application of the theory of representa-
tions enables us to generalize the coincidence method
of Grant, Howells & Rogers (1957). The extension of
this theory to all the space groups is the object of a
subsequent paper.
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